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Malware EvolutionMalware Evolution

� Pre 1990 – Experimental /intellectual pranks. E.g. Morris 
Worm.

� 1990-1999 – More sophisticated Viruses and Worms e.g. 
Macro virus, encryption, polymorphic viruses.   

� 2000-2003 – Explosion of Worms. CodeRed, Nimda, Slammer 
etc...

� 2003-present – Increase in malware sophistication, blended 
threats, countermeasures, updating. e.g. Conficker. 

� Shift in motive towards financial gain has driven the increased 
sophistication and prevalence of malware. 

� The Web today provides cyber-criminals with the targets, 
exploitable weaknesses, and anonymity required for large-
scale fraud.



Modern Modern ‘‘MalwareMalware’’ Economy Economy 

�Cyber-criminals have embraced Web 2.0 

technologies, and specialise in various roles.

�Tools of the trade are readily available for purchase, 

with some malware authors even offering technical 

support and updates to their products. 

�Basic strategy is to host new malicious sites / 

compromise legitimate ones, and then lure victims to 

them. 

�Shift towards more stealthy and sophisticated 

malware e.g. Drive by Downloading, large surge in 

data theft Trojans malware.



PhD Focus PhD Focus 

�Anomaly detection techniques to better 

distinguish between normal and potentially 

malicious behaviour within a computer 

system. 

�Avenues of investigation 

• Artificial Immune Systems 

• Machine Learning

• Statistical Techniques 
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The Dendritic Cell Algorithm (DCA) The Dendritic Cell Algorithm (DCA) 

�An abstract model of Dendritic Cell behaviour based 

on the paradigm of Danger Theory. 

�Aims to perform anomaly detection by correlating a 

series of informative signals with a sequence of 

abstract events (termed `antigens'). 

�Signals � Multiple time series set to give 

approximations of normal or anomalous aggregate 

behaviour (termed either `danger' or `safe').

�Antigens � Symbolic IDs of the individual events.

�The goal is to determine which event is most likely 

responsible for an observed rise in danger signals . 
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Some LimitationsSome Limitations
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�Reliance on expert knowledge to carry out mapping 
into the antigen and signal space.

�Can lead to the definition of inputs being quite 
arbitrary, difficult to compare applications. 

�Trial and error in finding appropriate parameters.
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My ApproachMy Approach
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�Generate controllable synthetic data using a 
model.

�Investigate the relationship between inputs, DCA 
parameters, and algorithm performance.

�Focus on the deterministic DCA (dDCA).

Model to 

Generate 

Synthetic 

Data 

Parameters

xjfang
高亮



Errors in classification occurred at boundaries 



Phase 1: Formation of 

Inputs to DCA

Phase 2: Input Processing 

by DC Population  

Phase 3: Final Classification 

•MCAV

•MAC

• K Alpha

• Threshold based 

calculation

• Fuzzy set Theory 

calculation 

• Randomly drawn from a pool of 

antigen

• Allocated in Round Robin fashion  

• No. of DCs

•Migration  

Threshold 

Distribution

Techniques used:

• Simple stats

• PCA

• n-gram analysis

• Information Theory

• Expert Knowledge   
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Back to Basics Back to Basics 

What problem am I really trying to solve?

� Unsupervised classification of previously unseen events, based on cross-

referencing multiple heuristic indications of system behaviour. Context based 

anomaly detection. 

� Ideally operating within a sliding window on continual streaming data providing 

real time detection of anomalies.

� Related to the simpler one of identifying anomalies in streaming data, however: 

• Monitoring multiple time series in parallel.

• Allowing multiple events to happen at each time step.

� Investigate other approaches to solve the same/similar problems.

• Time series analysis techniques.

• ML context based anomaly detection.

• Rare Event detection.

• Statistical decision making / Change Point Detection.



Other ApproachesOther Approaches

Sliding window Techniques 

� Change Point Detection 

• Statistical technique using non-parametric  CUSUM.

� Incremental Local Outlier Factor 

• k nearest neighbour. 

Multi-time series Analysis Methods 

� Multivariate linear regression

• Relies on relationships between time series as well as the past.

� Multivariate Bayesian Scan Statistic 

• Bayesian Networks,  need priors plus complete knowledge of events. 



Future WorkFuture Work

�Investigate which techniques are the most 

effective and incorporate into the danger 

theory framework. 

�Either use these techniques to augment the 

DCA, or integrate those that prove useful into a 

new ‘DCA like’ AIS algorithm inspired by Danger 

theory.

�Test on simulated and real world data sets 

(hopefully!) 



Thanks For Your Attention Thanks For Your Attention 

QuestionsQuestions??


