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Malware Evolution

» Pre 1990 — Experimental /intellectual pranks. E.g. Morris
Worm.

» 1990-1999 — More sophisticated Viruses and Worms e.g.
Macro virus, encryption, polymorphic viruses.

» 2000-2003 - Explosion of Worms. CodeRed, Nimda, Slammer
etc...

» 2003-present — Increase in malware sophistication, blended
threats, countermeasures, updating. e.g. Conficker.

» Shift in motive towards financial gain has driven the increased
sophistication and prevalence of malware.

» The Web today provides cyber-criminals with the targets,
exploitable weaknesses, and anonymity required for large-
scale fraud.



Modern ‘Malware’ Economy

» Cyber-criminals have embraced Web 2.0
technologies, and specialise in various roles.

» Tools of the trade are readily available for purchase,
with some malware authors even offering technical
support and updates to their products.

» Basic strategy is to host new malicious sites /
compromise legitimate ones, and then lure victims to
them.

» Shift towards more stealthy and sophisticated
malware e.g. Drive by Downloading, large surge in
data theft Trojans malware.



PhD Focus

» Anomaly detection techniques to better
distinguish between normal and potentially
malicious behaviour within a computer
system.

» Avenues of investigation
* Artificial Immune Systems

* Machine Learning
* Statistical Techniques
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The Dendritic Cell Algorithm (DCA)

» An abstract model of Dendritic Cell behaviour based
on the paradigm of Danger Theory.

» Aims to perform anomaly detection by correlating a
series of informative signals with a sequence of
abstract events (termed "antigens').

» Signals = Multiple time series set to give
approximations of normal or anomalous aggregate
behaviour (termed either "danger’ or "safe’).

» Antigens = Symbolic IDs of the individual events.

» The goal is to determine which event is most likely
responsible for an observed rise in danger signals .
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Inputs to the DCA

Multiple Time Series Data (Signals)
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Some Limitations
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> Reliance on expert knowledge to carry out mapping
into the antigen and signal space.

» Can lead to the definition of inputs being quite
arbitrary, difficult to compare applications.

» Trial and error in finding appropriate parameters.
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My Approach
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» Generate controllable synthetic data using a
model.

» Investigate the relationship between inputs, DCA
narameters, and algorithm performance.

» Focus on the deterministic DCA (dDCA).
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Phase 1: Formation of
Inputs to DCA

Phase 2: Input Processing
by DC Population
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Back to Basics

What problem am | really trying to solve?

>

Unsupervised classification of previously unseen events, based on cross-
referencing multiple heuristic indications of system behaviour. Context based
anomaly detection.

Ideally operating within a sliding window on continual streaming data providing
real time detection of anomalies.

Related to the simpler one of identifying anomalies in streaming data, however:
* Monitoring multiple time series in parallel.
* Allowing multiple events to happen at each time step.
Investigate other approaches to solve the same/similar problems.
* Time series analysis techniques.
°* ML context based anomaly detection.
° Rare Event detection.
* Statistical decision making / Change Point Detection.



Other Approaches

Sliding window Techniques
» Change Point Detection

* Statistical technique using non-parametric CUSUM.

» Incremental Local Outlier Factor
* k nearest neighbour.

Multi-time series Analysis Methods

» Multivariate linear regression
* Relies on relationships between time series as well as the past.
» Multivariate Bayesian Scan Statistic

* Bayesian Networks, need priors plus complete knowledge of events.



Future Work

» Investigate which techniques are the most
effective and incorporate into the danger
theory framework.

> Either use these techniques to augment the
DCA, or integrate those that prove useful into a
new ‘DCA like” AIS algorithm inspired by Danger
theory.

» Test on simulated and real world data sets
(hopefully!)
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