Malware and Artificial Immune Systems

Chris Musselle

Bristol Centre for Complexity Sciences (BCCS)
University of Bristol

Supervised by Dave Cliff and Ayalvadi Ganesh

04/10/2010
Malware Evolution

- 1990-1999 – More sophisticated Viruses and Worms e.g. Macro virus, encryption, polymorphic viruses.
- 2000-2003 – Explosion of Worms. CodeRed, Nimda, Slammer etc...
- 2003-present – Increase in malware sophistication, blended threats, countermeasures, updating. e.g. Conficker.

- Shift in motive towards financial gain has driven the increased sophistication and prevalence of malware.
- The Web today provides cyber-criminals with the targets, exploitale weaknesses, and anonymity required for large-scale fraud.
Cyber-criminals have embraced Web 2.0 technologies, and specialise in various roles.

Tools of the trade are readily available for purchase, with some malware authors even offering technical support and updates to their products.

Basic strategy is to host new malicious sites / compromise legitimate ones, and then lure victims to them.

Shift towards more stealthy and sophisticated malware e.g. Drive by Downloading, large surge in data theft Trojans malware.
PhD Focus

- Anomaly detection techniques to better distinguish between normal and potentially malicious behaviour within a computer system.

- Avenues of investigation
 - Artificial Immune Systems
 - Machine Learning
 - Statistical Techniques
The Dendritic Cell Algorithm (DCA)

- An abstract model of Dendritic Cell behaviour based on the paradigm of Danger Theory.
- Aims to perform anomaly detection by correlating a series of informative signals with a sequence of abstract events (termed `antigens').
- Signals → Multiple time series set to give approximations of normal or anomalous aggregate behaviour (termed either `danger' or `safe').
- Antigens → Symbolic IDs of the individual events.
- The goal is to determine which event is most likely responsible for an observed rise in danger signals.
Inputs to the DCA

- Observable global Behaviour
- Individual events /processes
- System
-Logged Events per Time Interval
 (Antigens)
- Multiple Time Series Data (Signals)
- Time
- Temporal Correlation

AABCBDDECSEDECADEGFEDELETEABERSE
RTBD
ABERBJFK GJUWBGTYOC FGKYBECW
QHD
P ODN FRB T OFOTMNFI SODO FM OPF
K FPF P U M RJT DKI MG
P T F OI NBJ OM
P
Some Limitations

- Reliance on expert knowledge to carry out mapping into the antigen and signal space.
- Can lead to the definition of inputs being quite arbitrary, difficult to compare applications.
- Trial and error in finding appropriate parameters.
My Approach

- Generate controllable synthetic data using a model.
- Investigate the relationship between inputs, DCA parameters, and algorithm performance.
- Focus on the deterministic DCA (dDCA).
Errors in classification occurred at boundaries
Phase 1: Formation of Inputs to DCA

- Time Windows

Raw Domain Data

- Techniques used:
 - Simple stats
 - PCA
 - n-gram analysis
 - Information Theory
 - Expert Knowledge

Signal Mapping

Antigen Mapping

- Antigen Multiplier

- Randomly drawn from a pool of antigen
- Allocated in Round Robin fashion

Phase 2: Input Processing by DC Population

- Weights for calculating CSM and K

Signal Processing

- No. of DCs
- Migration Threshold Distribution

Population Analysis

Antigen Sampling

- Randomly drawn from a pool of antigen
- Allocated in Round Robin fashion

Phase 3: Final Classification

- Threshold based calculation
- Fuzzy set Theory calculation

DC outputs

- Reassign same migration threshold
- Assign new threshold randomly

Segmentation by ABS or TBS

Metric Calculation

- MCAV
- MAC
- K Alpha
What problem am I really trying to solve?

- Unsupervised classification of previously unseen events, based on cross-referencing multiple heuristic indications of system behaviour. Context based anomaly detection.
- Ideally operating within a sliding window on continual streaming data providing real time detection of anomalies.
- Related to the simpler one of identifying anomalies in streaming data, however:
 - Monitoring multiple time series in parallel.
 - Allowing multiple events to happen at each time step.
- Investigate other approaches to solve the same/similar problems.
 - Time series analysis techniques.
 - ML context based anomaly detection.
 - Rare Event detection.
 - Statistical decision making / Change Point Detection.
Other Approaches

Sliding window Techniques

- Change Point Detection
 - Statistical technique using non-parametric CUSUM.

- Incremental Local Outlier Factor
 - k nearest neighbour.

Multi-time series Analysis Methods

- Multivariate linear regression
 - Relies on relationships between time series as well as the past.

- Multivariate Bayesian Scan Statistic
 - Bayesian Networks, need priors plus complete knowledge of events.
Future Work

- Investigate which techniques are the most effective and incorporate into the danger theory framework.
- Either use these techniques to augment the DCA, or integrate those that prove useful into a new ‘DCA like’ AIS algorithm inspired by Danger theory.
- Test on simulated and real world data sets (hopefully!)
Thanks For Your Attention

Questions?